SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska

Etienne Berthier a,⁎, Thierry Toutin b,1

a CNRS-LEGOS, 14 av E. Belin, 31400 Toulouse, France
b Canada Center for Remote Sensing/Natural Resources Canada 588 Booth Street Ottawa Ontario, Canada K1A 0Y7

Received 6 June 2007; received in revised form 12 November 2007; accepted 17 November 2007

Abstract

Monitoring the response of land ice to climate change requires accurate and repeatable topographic surveys. The SPOT5-HRS (High Resolution Stereoscopic) instrument covers up to 120 km by 600 km in a single pass and has the potential to accurately map the poorly known topography of most glaciers and ice caps. The acquisition of a large HRS archive over ice-covered regions is planned by the French Space Agency (CNES) and Spotimage, France during the 2007–2008 International Polar Year (IPY). Here, we report on the accuracy and value of HRS digital elevation model (DEM) over ice and snow surfaces.

A DEM is generated by combining tools available from CNES with the PCI Orthoengine SE software, using HRS images acquired in May 2004 over South-East Alaska (USA) and northern British Columbia (Canada). The DEM is evaluated through comparison with shuttle radar topographic mission (SRTM) DEM and ICESAT data, on and around the glaciers. A horizontal shift of 50 m is found between the HRS and SRTM DEMs and is attributed to errors in the SRTM DEM. Over ice-free areas, HRS elevations are 7 m higher than those of SRTM, with a standard deviation of ±25 m for the difference between the two DEMs. The 7-m difference is partly attributed to the differential penetration of the electromagnetic waves (visible for HRS; microwave for SRTM) in snow and vegetation.

We also report on the application of sequential DEMs (SRTM DEM in February 2000 and HRS DEM in May 2004) for the monitoring of glacier elevation changes. We map the topographic changes induced by a surge of one tributary of Ferris Glacier. Maximum surface lowering of 42 (±10) m and rising of 77 (±10) m are observed in the 4 years time interval. Thinning rates up to 10 (±2.5) m/yr are observed at low altitudes and confirm the ongoing wastage of glaciers in South-East Alaska.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Glacier; Ice cap; Climate change; Glacier surge; International Polar Year; Topography; DEM; SPOT5; SRTM; ICESAT; Alaska; British Columbia

1. Introduction

Mass loss of mountain glaciers, ice caps and ice sheets are estimated to account for one third of the current 3 mm/yr of sea level rise (Cazenave, 2006; Kaser et al., 2006). Repeated topographic surveys of these ice masses are needed to better constrain (or update) this estimate and to monitor the dynamic evolution of the cryosphere in response to climate change.

Accurate glacial topography is required for glaciology and remote-sensing research. A digital elevation model (DEM) is essential for image processing steps such as (Kääb et al., 2005): (i) orthorectification of images to obtain maps and derive surface velocity fields; (ii) correction of the influence of topography on image radiometry and; (iii) delimitation of glacier drainage basins and debris-covered glaciers. DEMs (and the corresponding hypsographic curves) are also needed for glaciological field studies to convert sparse measurements of ablation and accumulation to the annual specific mass balance of the whole glacier (Paterson, 1994).

Synthetic aperture radar images acquired with slightly different viewing angles can be processed interferometrically to retrieve a DEM (Li and Goldstein, 1990; Toutin and Gray, 2000).
This technique was used during the shuttle radar topographic mission (SRTM) to map most continental surfaces between 56°S and 60°N (Rabus et al., 2003). However, the SRTM dataset does not cover the polar regions (North of 60°N and South of 56°S) where most ice masses are located. Additional elevation data over large regions would likewise be useful to fill holes in SRTM data and survey polar regions.

Glacier DEMs can also be derived from space-borne optical sensors: SPOT1-4 and SPOT5-HRG (high resolution geometric) acquire pairs of cross-track (from two different orbits) stereoscopic images, typically separated by several days (Berthier et al., 2004). The time separation severely limits the use of these sensors for large scale mapping because of radiometric variations between the multiple images (Toutin, 2004; Toutin and Cheng, 2002) and frequent cloud cover over mountainous and polar regions. Furthermore, glacier flow (up to a few meters per day) during this interval can bias the topographic measurement. Consequently, large scale mapping of ice-covered regions is easier using optical sensors acquiring real-time (along-track) stereoscopic pairs such as Terra-ASTER, SPOT5-HRS or ALOS-PRISM. Since 2000, ASTER has been acquiring 15-m resolution stereoscopic images and DEMs have been derived with a grid spacing of 30 m and a vertical accuracy of 15–25 m (Toutin, 2002; Welch et al., 1998). Numerous applications of ASTER DEMs over mountain glaciers have been reported within the Global Land Ice Measurement from Space (GLIMS) project (Kääb, 2005; Kargel et al., 2005; Toutin, in press) and also over the fast-flowing glaciers of the Antarctic and Greenland ice sheets (Howat et al., 2007; Stearns and Hamilton, 2007).

HRS, on board SPOT5, also acquires along-track stereoscopic images (Fig. 1). HRS only provides panchromatic images but has several advantages over ASTER and other SPOT data:

1. The image swath is 120 km, two times wider than other SPOT or ASTER images. Regions up to 120 × 600 km² (72,000 km²) can be observed in a single pass of the satellite. A large swath area is crucial when monitoring ice caps and icefields covering as much as 90,000 km² in South-East Alaska (Arendt et al., 2002) or 150,000 km² in the Canadian archipelago (Dyurgerov and Meier, 2005).

2. HRS has a high resolution (10 m). However, the image pixel size is smaller along track (5 m) than across track (10 m) to increase the accuracy of the DEMs (Bouillon et al., 2006).

3. The two stereoscopic images are acquired with a ±20° fore- and aft-viewing angles which lead to a base-to-height (B/H) ratio of 0.8 compared to 0.6 for ASTER. This higher sensitivity to the topography increases the DEM accuracy but could also lead to larger mismatched areas in steep regions where strong stereoscopic distortions of the images may limit their correlation.

Since the launch of SPOT5 in 2002, mainly ice-free regions have been observed by HRS and large scale DEMs have been produced by the French Mapping Agency (IGN, Institut Géographique National). The acquisition of HRS stereo-pairs over ice-covered regions (mostly polar ice caps and the margins of the two major ice sheets) is planned by the French Space Agency (CNES, Centre National d’Etudes Spatiales) and Spotimage, France during the International Polar Year (IPY) in 2007–2009 (except for regions south of 81°S and north of 81°N that are not visible from SPOT5 orbit).

On ice-free terrain, for a single pair of HRS images, the horizontal accuracy has been 15 m at the 68% confidence level (LE68) and the vertical accuracy better than 5 m in medium relief areas, and around 10 m in areas of higher relief (Bouillon et al., 2006; Toutin, 2006). To assess the accuracy and value of this sensor for glaciological research, we evaluated HRS data acquired in May 2004 for large icefields located in North-West British Columbia (Canada) and South-East Alaska (Molina, 2007). This image pair was provided as a courtesy by Spotimage and chosen because it was acquired with the low gain needed to avoid sensor saturation (Table 1). One of the two HRS images (covering 120 × 200 km²) is displayed in Fig. 2.

The outline of our study is as follows. First we describe the processing chain for an HRS image pair and the generation of a DEM using SPOT5 acquisition parameters (position and attitude of the satellite/sensor) only. We then evaluate the relative accuracy of this DEM over ice-free regions by comparing it to an SRTM DEM and ICESat laser altimetric data. Finally, we report on some of our observed glacier elevation changes detected with the SRTM and HRS DEMs.

Table 1

<table>
<thead>
<tr>
<th>Characteristics of the HRS images used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition date</td>
</tr>
<tr>
<td>Ground sampling distance</td>
</tr>
<tr>
<td>Swath/length</td>
</tr>
<tr>
<td>Panchromatic band</td>
</tr>
<tr>
<td>Fore/aft-viewing angle</td>
</tr>
<tr>
<td>Gain</td>
</tr>
</tbody>
</table>
2. Generation of HRS DEM

Software available from CNES and the OrthoengineSE module of PCI Geomatica are combined to compute the HRS DEM in two steps. First, the CNES software is used to determine automatically the ground coordinates of about 50 tie points (TPs) spread all over the stereo-images. Then, this set of ground control points (GCPs) is imported into OrthoengineSE to compute the HRS stereo model and the DEM. A similar methodology has been used to derive a DEM from SPOT5-HRG images over Himalaya (Berthier et al., 2007). The improvement over this previous study is that here no existing cartographic data and DEM are required to generate GCPs. Consequently, the method can be readily applied to all regions on Earth.

GCPs are distinctive terrain features with known ground coordinates and good visibility on the images (so defined by their column and line positions). They are used to compute or refine the stereo model, and, consequently, are needed to produce a DEM. Traditionally, GCP ground coordinates are derived from maps or field surveys (e.g. using Differential Global Positioning System, DGPS). Because accurate maps are lacking for most ice-covered regions and field surveys are not always feasible, the GCPs derived here are based on the knowledge of SPOT5 acquisition parameters (position and attitude of the satellite/sensor) and the stereoscopic intersection of the two lines of sight (Spotimage, 2002). The following paragraphs explain how these GCPs are generated by, first, collecting TP images on the images and, second, by finding their ground coordinates.

Fifty (50) TPs distributed over the stereo-pair were identified as topographic features such as summits, nunataks, river beds, and road intersections that were clearly defined on both images, and span a large range of altitudes. The line of sight for each image of the stereo-pair was computed for each TP using the acquisition parameters provided in the HRS metadata (Spotimage, 2002) (Fig. 1). If the image acquisition parameters were exactly known and each TP represented precisely the same feature in both images, the HRS fore- and back-looking lines of sight should intersect in one point on the ground. Due to the uncertainties in the acquisition parameters of the two images and the difficulty to pick exactly the same feature in the two images of the stereo-pair (referred to here as “image pointing”), the lines of sight do not intersect in a point. Consequently, to find the (unique) ground coordinates of each TP (noted \([\lambda, \phi, z]_{TP} \) with \(\lambda \) the longitude, \(\phi \) the latitude and \(z \) the altitude), all possible elevations (0 to 5000 m in our region) were scanned to determine the altitude \(z_{TP} \) that minimized the horizontal distance \(d_{BF} \) between the fore- and back-looking lines of sight (Fig. 1):

\[
d_{BF} = \sqrt{(\lambda_B - \lambda_F)^2 + (\phi_B - \phi_F)^2}
\]

where \((\lambda, \phi)_B \) and \((\lambda, \phi)_F \) are the ground coordinates for the fore-looking and the back-looking images, respectively.

The ground coordinates \((\lambda, \phi, z)_{TP} \) of each TP were then calculated as the average of the fore- and back-looking coordinates (along the line of sight) at the altitude \(z_{TP} \):

\[
\lambda_{TP} = \frac{(\lambda_B(z_{TP}) + \lambda_F(z_{TP}))}{2}
\]

\[
\phi_{TP} = \frac{(\phi_B(z_{TP}) + \phi_F(z_{TP}))}{2}
\]

At this stage, each TP is characterized by its image (column and line) and ground \((\lambda, \phi, z) \) coordinates and thus corresponds to a GCP to be input in OrthoengineSE for the second step.

GCP accuracy is limited by the errors in image pointing (ability to pick exactly the same feature in the two images) and the uncertainties of the SPOT5 acquisition parameters. For our 50 GCPs, the minimum of \(d_{BF} \) ranged from 0.1 to 11.5 m with a mean value of 5.6 m and a standard deviation of 2.4 m. These values are in the range of the image pointing errors (0.5 to 1 image pixel) indicating that limited error originates from the acquisition parameters. This is expected as the two images were acquired along the same orbit. Introducing numerous GCPs

Fig. 2. Study area: the Glacier Bay region (59°N, 137°W). One of the two HRS images acquired in May 2004 is embedded here in a Landsat 2000–2001 mosaic of South-East Alaska, North-West British Columbia (BC) and South-West Yukon Territory (YT). The coastline and the boarder between Alaska, BC and YT are overlaid in blue. (© CNES 2006; distribution Spotimage). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(here 50) reduced the propagation of image pointing (random) errors in the computation of the final stereo model using a least-squares adjustment process (Toutin, 2006). Our set of GCPs is characterized by a good internal consistency, however absolute horizontal errors (LE68) of 15 m (due to errors in the satellite position and attitude) are expected for SPOT5-HRS (Bouillon et al., 2006).

The GCPs were imported into PCI OrthoengineSE to compute the SPOT5 stereo model (Toutin, 2001, 2006). The 3D physical sensor modeling was originally developed to suit the geometry of push-broom scanners, such as SPOT1 (Toutin, 1983), and has been subsequently adapted at the Canada Centre for Remote Sensing (CCRS) as an integrated and unified geometric modeling to geometrically process multi-sensor stereo/block data (Toutin, 2004, 2006). Based on good quality GCPs, the accuracy of this model is within one-third of a pixel for medium-resolution images, better than one pixel for high-resolution (HR) images and one resolution cell for radar images, as long as there is no extrapolation in planimetry and altimetry.

The two quasi-epipolar images generated from the raw images with the previously-computed stereo-model were then cross-correlated at each pixel using multi-scale mean normalized cross-correlation method, with sub-pixel computation of the maximum of the correlation coefficient to compute the elevation parallaxes. Pixels were flagged as mismatched when their correlation score (which ranges from 0 to 100) was lower than 50. The terrain elevations were finally derived from the elevation parallaxes using the previously-computed stereo-model. At this stage, errors in the computation of the final stereo model using a least-squares adjustment process (Toutin, 2006). Our set of GCPs is characterized by a good internal consistency, however absolute horizontal errors (LE68) of 15 m (due to errors in the satellite position and attitude) are expected for SPOT5-HRS (Bouillon et al., 2006).

The mismatched areas are displayed in black. Altitudes range from sea level to over 4000 m; (c) Mask associated with the DEM. In white, regions where the correlation failed leading to mismatched areas in the DEM. The grey arrows locate two large icelfields (Brady in the South, Carroll in the North) where the lack of radiometric contrast led to large mismatched areas in the DEM. (© CNES 2006; distribution Spotimage).
western Vatnajökull ice cap (Iceland) has been obtained previously from SPOT5-HRG images acquired two days apart in early October 2004 when the sun elevation was only 19° (Berthier et al., 2006b). Comparatively, the sun elevation was 49° for the HRS data used in the present study.

3. Accuracy of the HRS DEM over ice-free regions

3.1. Horizontal accuracy

A previous study using HRS images for ice-free terrain reported an absolute horizontal accuracy (LE68) of 15 m (Bouillon et al., 2006). Because the same sensor model was used to derive our set of GCPs, we expect a similar accuracy. We compared the HRS DEM to the SRTM DEM to test this expectation as 90% of SRTM DEM tiles in North America are reported to have an absolute horizontal accuracy of 12.6 m (Rodriguez et al., 2006). The location performance of HRS was also tested using independent planimetric data coverage of roads.

The SRTM DEM of our study area was obtained by merging 12 tiles, each covering 1° by 1° (SRTM3, version 2, downloaded at ftp://e0srp01u.ecs.nasa.gov). The original grid spacing of SRTM3 is 3″, corresponding to about 92 m in latitude and 52 m in longitude for our study area. We reprojected the SRTM DEM to the same 50-m Albers Conical Equal Area map projection.

The mean horizontal shift between the HRS DEM and the SRTM DEM was calculated as the shift that minimizes the standard deviation of the difference between the two DEMs on ice-free regions (Berthier et al., 2007; Rodriguez et al., 2006). We noted a shift of one pixel (50 m) in the Easting direction and 0.2 pixel (10 m) in the Northing direction between both DEMs (Fig. 4). We then attempted to determine which DEM contains the major source of positional error.

One advantage afforded by the HRS data (compared to SRTM) is that the ortho-images can be used to identify visible features such as road networks, buildings, or other objects. Both HRS raw images were orthorectified at a 10-m posting using the HRS#2 DEM. As the two HRS stereo images were acquired with nonvertical and opposite incidence angles (±20°), a vertical error in the HRS DEM (δz) will approximately lead to a horizontal shift of tan(±20°) * δz = ±0.36 * δz. This error has an opposite sign for the two ortho-images and, therefore, the horizontal shift between the two ortho-images can be used to detect regions where DEM elevations are wrong. Consequently, the horizontal accuracy of the HRS sensor model (and DEM) can be assessed using the HRS ortho-images on: (i) regions where both HRS ortho-images present a limited horizontal shift (indicating small elevation errors in the HRS DEM); and (ii) where human-built features such as roads or buildings, whose ground coordinates are known, can be clearly identified on the images. Due to the remoteness of our study area, only one large road, was visible on the northern part of our HRS stereo-pair, and has been surveyed by the Canadian government with circular map accuracy (90%) better than 10 m.

The road vector data were overlaid on both HRS ortho-images (Fig. 5). Where the road turns to a nearly East–West direction at the northern edge (upper part in Fig. 5), a systematic shift in the South–North direction of 1–2 pixels (10 to 20 m) was observed. Because the same systematic shift was present in both HRS ortho-images, this shift was attributed to geopositioning error of the HRS sensor model. In addition, the North–South oriented line-road was well-located on both ortho-images, indicating very small errors (less than 10 m) in the East–West direction. These observations imply that most of the East–West offset observed between the HRS DEM and the SRTM DEM was due to errors in the latter data set, at least in the northern part of the images.

For further comparison, the HRS DEM was kept unchanged and the SRTM DEM was resampled (using a bicubic filter) to correct the calculated shift (50 m in the Easting direction and 10 m in the Northing direction). A good registration of the two DEMs is crucial before analyzing surface elevation differences: in steep regions, even a small horizontal shift (here one pixel or 50 m) can lead to large, erroneous elevation differences (Fig. 6).

3.2. Vertical accuracy

The two co-registered DEMs have been subtracted to analyze the elevation differences on the ice-free regions. Glacier outlines are needed to distinguish between ice-covered and ice-free regions. Existing outlines derived from USGS and BC government maps have been used (Larsen et al., 2007) and, where large changes occurred, updated to 2000–2001 using Landsat images. Note that our HRS images of May 2004 were not suitable for glacier outline mapping due to snow cover.

We summarized some of the major differences between the HRS (#1 and #2) and SRTM DEMs in Table 2. To compute these statistics, we excluded pixels whose absolute elevations differed by more than 100 m. These anomalous HRS elevations are suspect and need further investigation.
were mainly due to clouds. The standard deviation was smaller for HRS#1 (25 m) than for HRS#2 (28 m) due to the interpolation of mismatched areas in HRS#2. These results are worse than previously obtained by Bouillon et al. (2006) (around 10 m in high relief) but our study site was more challenging (e.g. steeper). Also, we compared our HRS DEM with a reference DEM (SRTM) that is less accurate in high mountain regions (Berthier et al., 2006a). As in the case of ASTER DEMs (Toutin, 2002) and SRTM DEMs (Surazakov and Aizen, 2006), the standard deviation of the differences between HRS#1 and SRTM was positively correlated with slope (not shown), which is consistent with previous studies (Toutin, 2006).

The mean differences indicate that both HRS DEMs (HRS#1 and HRS#2) are higher than SRTM by about 7 to 9 m on ice-free regions. We suspect that a portion of the observed differences in mean elevation is explained by the presence of snow on the ground at the time of acquisition of the HRS images. Snow cover is clearly visible on the images and is confirmed by the climate record at the Haines Nw weather station5 (250 m a.s.l.) where the mean average snow depth in April is close to 0.8 m. Moreover, at the Moore Creek Bridge station6 (59°35′N, 135°12′W, 570 m a.s.l., 50 km from Haines Nw, so slightly outside of our study area) 2.1 m of snow was recorded on 24 April 2004 and 1.7 m remained on 31 May 2004. Furthermore, the precipitation pattern over the Glacier Bay regions shows a strong dependence with elevation.7 So, deeper snow is predicted at higher elevations than at Haines Nw or Moore Creek Bridge. This is confirmed by glaciological field measurements where winter accumulation is reported to reach

7 See map at http://www.wrcd.dri.edu/pcpn/ak.gif.
4 m/yr water equivalent (w.e.) which corresponds to 10 m of snow if a density of 400 kg/m3 is assumed (Eisen et al., 2001; Motyka et al., 2003; Pelto and Miller, 1990).

It is likely that snow cover was also present during the acquisition of SRTM data in February 2000. However, the C-band (5.6 cm wavelength) radar signal, which was used during the mission, is known to penetrate through unmetamorphosed snow (Papa et al., 2002; Rignot et al., 2001) while HRS panchromatic band does not penetrate. Consequently, penetration of the radar signal in the cold snow layer of February 2000 is expected to limit the elevation bias (top of snow vs. bare earth) in the SRTM DEM for ice-free terrain.

On the other hand, previous studies have shown that SRTM interferometric elevations do not represent the summit of vegetation but rather the mean scattering phase center height located between the ground surface and the top of the vegetation (Kellndorfer et al., 2004). This is due to the interaction of the relatively short C-band wavelength with various scatterers associated with leaves, branches and ground. For example, in the forests of California and Georgia (USA) penetration reaches 5–10 m (Kellndorfer et al., 2004). In our case, similar penetration would lead to underestimated SRTM elevations compared to HRS elevations, which are based on the top-of-the-canopy reflectance, and could thus contribute to the systematic differences between the DEMs over ice-free regions. The C-band penetration depends on the density of scatterers (Toutin and Amaral, 2000). To our knowledge, this effect has never been studied and quantified for the boreal forests of South-East Alaska or British Columbia where the canopy height can reach 30–50 m (Larsen et al., 2007).

The spatial pattern of elevation differences between the HRS and SRTM DEMs is now analyzed for more specific areas (Fig. 7). The SRTM DEM is higher than the HRS DEM except on low elevation glacier tongues (see Section 4.1) and an ice-free sub-region (labeled A in Fig. 7) where HRS#1 is systematically lower by ca. 5–10 m. To assess the origin of the bias on sub-region A, we compared both DEMs to ICESat (Ice, Cloud, and Land Elevation Satellite) elevation profiles (Zwally et al., 2002). ICESat data have already been used regionally (Suzukovich and Aizen, 2006) and globally (Carabajal and Harding, 2005) to assess the accuracy of the SRTM DEM. Over South-East Alaska and North-West B.C., there were few ICESat data, presumably due to persistent cloud cover (Sauber et al., 2005).

We compared all 604 footprints which were available for the small sub-region A (20 by 20 km2) between September 2003 (laser period 2A) and March 2006 (laser period 3E) (Fig. 8). ICESat data were referenced to the Topex/Poseidon datum which differs slightly from the WGS-84 datum used for SRTM.

Table 2	Statistics on the elevation differences between the two HRS DEMs (HRS#1 with mismatched areas eroded and HRS#2 with all mismatched areas filled by interpolation) and the SRTM DEM on the ice-free regions		
Mean difference (m)	Standard deviation (m)	Sample size	
HRS#1–SRTM	7.1	25	2,338,186
HRS#2–SRTM	9.5	28	2,755,001
and HRS. The horizontal datum conversion and the transformation from ellipsoidal height to altitude above the EGM96 geoid were performed using software distributed by the National Snow and Ice Data Center. For each laser footprint (covering about 70 m), the corresponding DEM elevation was extracted by bilinear interpolation. All data points for which the elevation differences (with SRTM or HRS) were greater than 100 m were considered as blunders and removed (Carabajal and Harding, 2005). After this exclusion, 201 points remained. HRS#1 is only 3 m higher than ICESat whereas SRTM is nearly 9 m higher (Table 3). The standard deviations are comparable for the two DEMs (~10 m). For sub-region A, we can conclude that the local bias between HRS and SRTM is mainly due to errors in SRTM.

4. Glacier elevation changes using SRTM and HRS data

Glacier surface elevation changes during four years (between February 2000 and May 2004) were measured by differencing the SRTM and HRS DEMs. Given the relative random and systematic errors between the two DEMs (Table 2), only absolute elevation changes larger than 10 m were statistically significant (Etzelmüller, 2000).

4.1. Elevation changes with altitude

The map of elevation differences between 2000 and 2004 is shown in Fig. 7. The elevation changes on ice-covered regions are also displayed as a function of altitude after averaging by altitude interval of 100 m (Fig. 9).

At low elevations (below 500 m a.s.l.), glaciers thinned on average by almost 10 m. Brady, Carroll and Burroughs glaciers, thinned by up to 40 (±10) m at their front over the 4.25 year period (Figs. 6 and 7). The long-term rate (1948–1999 for Alaska; 1985–1999 for British Columbia) of glacier downwasting reported for this region (Larsen et al., 2007; Schiefer et al., 2007) continued in the first four years of the twenty first century.

A systematic thickening of the glaciers is observed above 500 m a.s.l. (Fig. 9). The apparent thickening can be attributed both to the snow cover during HRS acquisition and the
penetration of the SRTM C-band radar signal through the cold snow of February 2000. The difference is higher (nearly 20 ± 10 m) on glaciers than on ice-free regions (7 to 9 ± 10 m) probably because of the altitudinal gradient of the precipitation (Section 3.2) combined with the fact that glaciers are mainly located at higher elevations.

To study the volumetric change of glaciers, sequential DEMs should be acquired near the end of the ablation season (Paterson, 1994). Our data were from the middle (SRTM) and at the end (HRS) of the winter. Consequently, we do not report on a total glacier volume change that would mainly reflect seasonal variations.

4.2. Elevation changes experienced by surging glaciers

Many glaciers of South-East Alaska, Yukon Territory and Northern British Columbia are described as surge-type (Clarke and Holdsworth, 2002a, b). The life cycle of a surging glacier is characterized by an active phase with a rapid transfer of mass from the upper “reservoir” area to the lower “receiving” area, and ice velocities that increase by a factor of 10 to 100. During the quiescent phase, ice flow rates decline substantially and the reservoir area builds up again (Paterson, 1994). Together with field studies (Björnsson, 1998), new remote-sensing observations could help better understand the timing of this phenomenon (Magnusson et al., 2005).

Here, the elevation changes induced by a surge were clearly depicted for a tributary of Ferris Glacier (South of Grand Pacific Glacier in the Fairweather Mountains). Over the four-year period, the glacier thinned by up to 42 m along its central portion when its snout thickened by 77 m where it coalesces with Ferris Glacier (Fig. 10). A complex pattern of crevasses and the formation of a bulge near its terminus are clear signs that the surge is fully developed in May 2004. The absence of these patterns on an August 2000 Landsat image indicates that the surge started later than summer 2000.

We estimated the volume of ice that was transferred during the surge by defining the area of the reservoir (and receiving region) to include all regions which experienced thinning (or thickening). They covered 5.6 km² and 2.7 km², respectively. Multiplying the reservoir and receiving areas by their mean elevation changes (−18 ± 10 m and +36 ± 10 m respectively) led to the redistributed ice volume. The two numbers agree within

Table 3
Statistics on the elevation differences between the two large-scale DEMs (SRTM or HRS#1) and ICESat profiles available for the small ice-free sub-region A (located in Figs. 7 and 8) where a systematic difference has been observed between HRS#1 and SRTM.

<table>
<thead>
<tr>
<th></th>
<th>Mean difference (m)</th>
<th>Standard deviation (m)</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRTM–ICESat</td>
<td>8.7</td>
<td>10.5</td>
<td>201</td>
</tr>
<tr>
<td>HRS#1–ICESat</td>
<td>3.0</td>
<td>11.4</td>
<td>201</td>
</tr>
</tbody>
</table>
5% and indicate that 0.1 (±0.005) km³ of ice was transferred during the surge.

5. Discussion and conclusions

HRS images have the potential for accurate and repeatable topographic surveys of ice-covered regions. DEMs can be generated without the need to collect GCPs from maps or in the field and, consequently, HRS data are most valuable for remote regions. Our HRS DEM of South-East Alaska had a vertical accuracy of ±25 m (LE68), which is not as good as previous HRS DEMs obtained over medium topography (Bouillon et al., 2006; Toutin, 2006). This is because we dealt with an ice-covered region in a challenging mountainous topography with no accurate cartographic data. Additional work is now needed to assess the accuracy of HRS DEMs over the relatively gentle slopes close to

![Fig. 9. Elevation changes (m) as a function of altitude for the ice-covered regions (circle). Each point corresponds to the mean elevation change within an altitude interval of 100 m. For each altitude range, a Gaussian filtering has been applied to removed outliers (Berthier et al., 2004). The standard deviation of the elevation differences is about 20 m. The black histograms show the hypsometry of these ice-covered regions (in km²).](image)

Fig. 9. Elevation changes (m) as a function of altitude for the ice-covered regions (circle). Each point corresponds to the mean elevation change within an altitude interval of 100 m. For each altitude range, a Gaussian filtering has been applied to removed outliers (Berthier et al., 2004). The standard deviation of the elevation differences is about 20 m. The black histograms show the hypsometry of these ice-covered regions (in km²).

![Fig. 10. Surge of a tributary of Ferris Glacier. (a) Elevation changes (m) induced by the surge. Note that the upper basin of the glacier was not affected by the surge; (b) Landsat image acquired 10 August 2000; (c) HRS image of May 2004. A highly crevassed glacier surface, the formation of a bulge at the front and the deformation of the central moraine of Ferris Glacier (see details in panel d) are clear confirmation that the glacier has surged. (© CNES 2006; distribution Spotimage).](image)
the margins of the polar ice sheets. Together with the DEM, 10 m resolution HRS ortho-images with an absolute horizontal accuracy of ±10–20 m have been generated.

For ice-free regions, the HRS DEM is ~7–9 m higher than the SRTM DEM. This difference is partly attributed to the presence of snow on the ground in May 2004 when the HRS images were acquired. Partial penetration of the SRTM C-band radar signal through the canopy is another potential explanation to this difference. This mean difference is not constant throughout the DEMs. For example, HRS is lower than SRTM by 5 to 10 m for a 20 km by 20 km ice-free sub-region. For this sub-region, HRS-derived elevations are in good agreement with accurate ICESat altimetric data. The combination of large scale HRS DEMs with accurate but sparse ICESat profiles is a promising avenue for future research. This research, however, will require an extensive analysis of the spatial pattern of elevation changes for stable regions surrounding ice masses in addition to any elevation changes of glaciers and ice sheets.

If cloud-free images are available, the main limitation of HRS data in glaciology is the difficulty in retrieving elevations for flat portion of the largest icefields due to the lack of radiometric contrast. Better results may be obtained in the future by scheduling satellite acquisitions at the end of the ablation season (September in the Northern hemisphere) when the snow transformation is important and the sun is lower above the horizon.

We studied changes in the elevation of glacier surfaces by differencing the May 2004 HRS DEM and the February 2000 SRTM DEM. In particular a tributary of Ferris glacier surged over this time period, and transferred 0.1 km³ of ice between its SRTM DEM. In particular a tributary of Ferris glacier surged over this time period, and transferred 0.1 km³ of ice between its SRTM DEM. In particular a tributary of Ferris glacier surged over this time period, and transferred 0.1 km³ of ice between its SRTM DEM. In particular a tributary of Ferris glacier surged over this time period, and transferred 0.1 km³ of ice between its SRTM DEM.

Acknowledgements

The comments by Brian Menounos, David Burgess, four anonymous reviewers and M. E. Bauer (Editor-in-Chief) led to major improvements in our manuscript. The SPOT5-HRS stereo-pair was kindly provided by Marc Bernard of Spot Image SA (France). We would like also to thank C. Larsen (University of Alaska) for sharing his glacier outlines, D. Korn and T. Haran (National Snow and Ice data center, Boulder) for their help with ICESat data, and Bazb Azarfar (POLARPLUME) for some insightful discussions. The Landsat mosaic was derived from images processed by GINA (University of Alaska) and SPOT5-HRG images were purchased thanks to ISIS proposal #864. H. Vadon and A. Bouillon provided some useful information concerning the SPOT5-HRS sensor. E.B. acknowledges Garry Clarke and Paul Smith for welcoming him at the Earth and Ocean Science Department of the University of British Columbia (Canada), where he was supported by a Marie Curie Outgoing International Fellowship from the European Union.

References

