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Abstract

The hydrological cycle for high latitude regions is inherently linked with the seasonal snowpack. Thus, accurately monitoring the snow depth
and the associated aerial coverage are critical issues for monitoring the global climate system. Passive microwave satellite measurements provide
an optimal means to monitor the snowpack over the arctic region. While the temporal evolution of snow extent can be observed globally from
microwave radiometers, the determination of the corresponding snow depth is more difficult. A dynamic algorithm that accounts for the
dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from Special Sensor Microwave/
Imager (SSM/I) brightness temperatures and was validated over the U.S. Great Plains and Western Siberia.

The purpose of this study is to assess the dynamic algorithm performance over the entire high latitude (land) region by computing a snow depth
multi-year field for the time period 1987–1995. This multi-year average is compared to the Global Soil Wetness Project-Phase2 (GSWP2) snow
depth computed from several state-of-the-art land surface schemes and averaged over the same time period. The multi-year average obtained by
the dynamic algorithm is in good agreement with the GSWP2 snow depth field (the correlation coefficient for January is 0.55). The static
algorithm, which assumes a constant snow grain size in space and time does not correlate with the GSWP2 snow depth field (the correlation
coefficient with GSWP2 data for January is −0.03), but exhibits a very high anti-correlation with the NCEP average January air temperature field
(correlation coefficient −0.77), the deepest satellite snow pack being located in the coldest regions, where the snow grain size may be significantly
larger than the average value used in the static algorithm. The dynamic algorithm performs better over Eurasia (with a correlation coefficient with
GSWP2 snow depth equal to 0.65) than over North America (where the correlation coefficient decreases to 0.29).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Several studies have shown the importance of taking into
account the large spatial scale snowpack evolution in order to
better understand arctic river discharge regimes (Cao et al.,
2002; Rango, 1997; Rawlins et al., 2006). As these rivers
supply fresh water to the Arctic Ocean, a modification in their
discharge, induced by a change in snow fall, could lead to a
modification in the thermohaline circulation. Moreover, the
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snowpack is an important component of the climate system and
its depletion may increase global warming through feedback
processes (Hall, 2004). Therefore, the monitoring of the snow
depth and its extent is a key issue to understand the hydrological
cycle and its relation to climate change at high latitudes.

Over high latitude regions, in-situ measurements are very
sparse and do not allow the accurate estimation of the global
snowpack. Passive microwave satellite sensors are well suited
for this purpose as they are sensitive to both snow extent and
snow depth. Yet, snow depth retrieval from SSM/I brightness
temperature is difficult because snow emissivity is also sensitive
to the snow grain size (Tsang et al., 2000) which is highly
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Fig. 1. Maps of different parameters characterizing the high latitude regions:
topography from NGDC 5 min Digital Elevation Model (a), snow classification
from Liston and Sturm (1998) (b) and percentage of lakes from IGBP (c).

2558 S. Biancamaria et al. / Remote Sensing of Environment 112 (2008) 2557–2568
variable and depends on the bulk temperature gradient through
the snowpack (Sturm and Benson, 1997). In order to take into
account the variability of the snow grain size, a snow depth
dynamic retrieval algorithm has been developed and validated
over the Northern Great Plains (Josberger and Mognard, 2002;
Mognard and Josberger, 2002) and over West Siberia (Boone
et al., 2006; Grippa et al., 2004, 2005a).

The main objective of this study is to validate the dynamic
algorithm over the entire high latitude regions, by comparing
the satellite snow depth multi-year average from 1987 to 1995
to the snow depth multi-year average over the same time period
from a land surface scheme (LSS) reanalysis product obtained
from the Global Soil Wetness Project Phase 2 (GSWP2).
GSWP2 drives several state-of-the-art LSS using the best
quality atmospheric and land surface databases, and long-term
monitoring sites to produce global land surface fluxes and state
variables (Dirmeyer et al., 2006), such as snow depth (SD) and
snow water equivalent (SWE). Hence, it is analogous to the
NCEP atmospheric reanalysis program. For this snow study, the
SD obtained from the static retrieval algorithm developed by
Chang et al. (1987) (which assumes a spatially and temporally
constant snow grain size) is compared to the SD from the
dynamic algorithm.

2. Study area and datasets

This section describes the input satellite data used by the
snow depth retrieval algorithms, the ancillary input data, the
snow depth multi-year average used to validate the satellite
retrieval algorithms and the main study area characteristics. The
vegetation and lake classifications used for a more detailed
validation are also presented herein. The time period of this
study extends from October 1987 to September 1995, which is
the common time period for both SSM/I and GSWP2 datasets.

2.1. Study area

The study area corresponds to the high latitude regions with
latitudes higher than 50° North. Fig. 1a shows a topographic
map of this region. The main vegetation zones consist of steppe
and agricultural areas at lower latitudes, taiga and tundra at
higher latitudes (Fig. 1b). In addition, there are a large number
of lakes in the study domain, especially in North America
(Fig. 1c), which provides an additional factor of diversity in the
surface emissivities.

2.2. SSM/I data

The Special Sensor Microwave/Imager (SSM/I) measures
the earth emissivity in seven microwave frequencies with
horizontally and vertically polarized channels at 19.35, 37 and
85.5 GHz and a vertically polarized channel at 22.235 GHz.
Since July, 1987, this instrument has been operating on board
the operational Defense Meteorological Satellite Program satel-
lite series (DMSP F-8, F-11 and F-13 platforms). For these
frequencies Chang et al. (1987), showed that the 37 GHz
channel is the channel suitable to study the snowpack when
combined with the 19 GHz channel, which reduces the effects
of ground temperature and atmospheric perturbations on
changes in brightness temperatures. Both the static and the
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dynamic algorithms employ the spectral gradient, which is
defined here as the difference between the horizontally polar-
ized 19 and 37 GHz channels.

Daily SSM/I data have been provided by the National
Snow and Ice Data Center (NSIDC), mapped to the Equal Area
SSM/I Earth Grid (EASE-Grid) with a 25×25 km2 resolution
(Armstrong et al., 1994). To minimize the spatial gaps resulting
from the swath width, the daily data were averaged over pentads
(5-days periods).

2.3. Ancillary input data for the dynamic algorithm

For cold snowpacks, the snow grain size growth is primarily
driven by the temperature gradient through the snowpack. In the
dynamic algorithm, this gradient represents the difference
between the atmosphere/snow interface (referred to herein as
“air”) and the ground/snow interface temperatures. For the air
temperature, the National Center for Environmental Prediction
(NCEP) global reanalysis has been used, available from the
Joint Institute for the Study of Atmosphere and Ocean (JISAO)
(Kalnay et al., 1996). The NCEP air temperatures have been
interpolated to the EASE-Grid and averaged into pentads.

To estimate the temperature at the base of the snowpack, the
ground temperature simulated by the Interaction between the
Soil–Biosphere–Atmosphere (ISBA) LSS is used. ISBA
(Noilhan and Mahfouf, 1996) is a state-of-the-art LSS which
has been developed at Météo-France. Boone et al. (2006) ex-
plain in details how ISBA has been run to obtain the soil
temperature. Briefly, ISBA has been used with the explicit soil
diffusion option (Boone et al., 2000) with a six-layer soil
configuration with the highest vertical resolution at the surface.
The uppermost soil temperature (centred at 0.015 m) is assumed
to represent the temperature at the soil-snow interface (at z=0).
This approximation has negligible impact, especially since
monthly averages are used in this study. ISBA was forced with
the GSWP2 database to produce the averaged pentad ground
temperatures for a 13 years period (1982–1994) mapped into
EASE-grid.

2.4. Evaluation data

The datasets used to validate or investigate the spatial be-
haviour of the retrieval algorithms, namely the GSWP2 snow
depth and the land cover classification, are presented in this
section.

2.4.1. GSWP2 snow depth
A crucial issue for remote sensing based algorithms is vali-

dation, particularly over the high latitude regions, where in situ
observations are extremely sparse. Grippa et al. (2004) em-
phasized the difficulty in comparing local scale data to large
scale averages. Indeed, point observations are of limited value
when looking at data over the relatively large spatial scales
considered herein. Chang et al. (2005) performed a geostatis-
tical analysis of snow gauge data in the Northern Great Plains of
the USA and estimated the snow depth error to be about 22 cm
for one station on a 1°×1° grid cell. For this reason the retrieval
algorithm performance has been evaluated by comparing to the
global model-based analysis snow depth product from the
GSWP2 rather than to snow gauge data.

For this study, the GSWP2 snow depth fields represent an
average of the snow depth output from five LSS: MOSES (from
the U. K. Met. Office, Exeter, UK), NOAH (National Center for
Environmental Prediction, Camp Springs, USA), NSIPP
(NASA Goddard, Greenbelt, USA), SSiB (Center for Ocean
Land Atmosphere studies, Calverton, USA) and SWAP
(Institute of Water Problems, Moscow, Russia). This averaging
was performed to reduce the influence of single LSS, which can
be large at high latitudes (Schlosser et al., 2000). The input
atmospheric forcing database used to drive the LSS is the NCEP-
DOE reanalysis (Kanamitsu et al., 2002), which has been
“hybridized” (corrected using observed and satellite based pre-
cipitation data). These five LSS have been run for the period
from 1986 to 1995 and a monthly multi-year average for the
same period as the SSM/I data (October 1987 to September
1995) has been derived with a spatial resolution of 1°×1°.
Fig. 2a presents the average GSWP2 January snow depth. To
quantify the spread amongst the 5 LSS, the inter-model co-
efficient of variation (CV) was computed (quotient of the
standard deviation of the 5 LSS by their mean). Fig. 2b shows
that globally, for the regions with large snow depth (SDN30 cm),
the scatter is low (CV∼20%) while for regions with lower SD,
the CV increases to 40%, especially east of the Lena river The
inter-model spread is globally low and the averaging (Fig. 2a)
minimizes individual model biases.

Fig. 2c shows the USAF/ETAC snow depth climatology for
January (Foster and Davy, 1988) which approximately re-
presents a mean on a 30 year period ending in the 1980s. The
manually edited snow depths were derived from many sources
based on an extensive literature search. Fig. 2d shows the
correspondingNCEP air January temperature field. Globally, the
snow accumulation areas are the same for ETAC and GSWP2,
except around 160°E, where ETAC shows a local maximum that
is not present in GSWP2. The correlation coefficient between
ETAC and GSWP2 is 0.53, the differences come from errors in
snow depth field from GSWP2 (input errors, models errors, …),
errors in the ETAC climatology (few in-situ data, interpolation
method, …) and also from the differences in the time period
considered in regions that have the strongest response to climate
warming. The characteristic features of these snow depth fields
are similar, even if GSWP2 snow depths are greater than ETAC.
Even if this analysis cannot quantitatively address the accuracy
of the GSWP2 data, it is worthwhile to remember that the
GSWP2 models are run with the best atmospheric reanalysis,
which takes into account in-situ measurements. Thus, GSWP2
products are an equivalent of a reanalysis and provide the best
possible estimate of land surface variables, like snow depth.
Furthermore, they cover the same time period as SSM/I data,
unlike the USAF/ETAC snow depth fields.

Similar results (relatively low inter-model scatter and the
good agreement with in-situ based snow depth climatology)
have been found for the other winter months. That is why
GSWP2 snow depth fields have been used to validate the
retrieval algorithms.



Fig. 2. GSWP2 snow depth inter-model mean in cm averaged from 1988 to 1995 (a), inter-model coefficient of variation (standard deviation/mean, b), snow depth
mean from USAF/ETAC in cm (c) and NCEP air temperature in °C averaged from 1988 to 1995 (d), for January.
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Since the GSWP2 models simulate the land surface state
using a 1°×1° resolution, the snow depth over Alpine grid
points represents values corresponding to an average elevation
(mostly due to the spatially averaged air temperature). So,
regions with high sub-grid (1°×1°) topographic variability will
likely be the least reliable in terms of the snow product.

2.4.2. Land cover classification
Since vegetation cover affects brightness temperatures, the

correlation between GSWP2 data and output from retrieval
algorithms has been investigated over different vegetation areas.
For the high latitude regions, the main vegetation classes are
tundra and taiga. The classification used in this study is the
snow classification from Sturm et al. (1995). The different
classes, represented in Fig. 1b, are as follows: water, tundra
snow, taiga snow, maritime snow, ephemeral snow, prairie
snow, alpine snow and ice, they have a spatial resolution of
0.5°×0.5° that has been resampled to a 1×1° spatial resolution.
Sturm et al. (1995) describes the tundra snow class as a thin,
cold wind-blown snow area, usually found above or north of
tree line, with a snow depth range from 10 to 75 cm and with a
bulk density of 0.38 g cm−3. The taiga snow class corresponds
to a thin to moderately deep low-density cold snow cover found
in cold climates in forests where wind, initial snow density, and
average winter air temperatures are all low. The snow depth
range from 30 to 120 cm and the bulk density is 0.26 g cm−3.
Over North America, tundra and taiga classes cover respectively
41% and 23% of the whole area, whereas over Eurasia tundra
and taiga represent respectively 41% and 37% of the whole
area.
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To check the retrieval algorithms performance over areas
with different percentages of lakes, data from the International
Geosphere–Biosphere Program (IGBP) Earth surface classifi-
cation (Belward et al., 1999) is used and mapped to the NSIDC
EASE-Grid projection. The IGBP classification gives the
percentage of lakes for each EASE-Grid pixel (Fig. 1c). The
spatial distribution of lakes greatly differs between Eurasia and
North America: according to IGBP, the areal extent covered
with 10% of lakes or higher is much larger in North America
than in Eurasia.

3. Methods

This section presents the algorithms used in the current study
to retrieve snow depth from SSM/I data. The first algorithm
(Section 3.1.) is a static algorithm developed by Chang et al.
(1987), extensively used and referred to in the literature. The
second algorithm is the dynamic algorithm described in Section
3.2. The third algorithm, presented in Section 3.3., is called the
extended dynamic algorithm and computes the snow depth in
regions where the dynamic algorithm cannot be applied due to
the low temporal variations of the brightness temperature.

3.1. Static algorithm

The static algorithm developed by Chang et al. (1987), to
retrieve snow depth from SSM/I data is given by the following
equation:

SD ¼ ad SG ¼ ad Tb19H � Tb37Hð Þ ð1Þ

where SD corresponds to the snow depth (in cm), a=1.59 cm/
K, SG is the spectral gradient and TbxH is the SSM/I brightness
temperature at a frequency of x GHz for horizontal polarization.
The value of the a coefficient given above corresponds to a
snow grain size (i.e. radius) of 0.3 mm. This algorithm has been
widely used for the last two decades to retrieve snow depth
at continental to hemispheric scales (Chang et al., 1990),
for climate studies (Bamzai and Shukla, 1999; Wulder et al.,
2007), global snow depth monitoring studies (Foster et al.,
1997), and to assimilate into land surface models (Dong et al.,
2007).

Kelly and Chang (2003) computed global maps of spatially
varying coefficients a, obtained by re-calibrating the static
algorithm using meteorological station data that are not time
dependent. Foster et al. (2005) derived an alternate algorithm
that made systematic error adjustments based on environmental
factors including forest cover and snow morphology. Actually,
they defined, for each snow class from Sturm et al. (1995), a
correction parameter which changes each month. Nonetheless,
this coefficient does not have interannual variability and within
a class the snow grain size is supposed to be homogeneous.
These algorithms, based on the Chang et al. (1987) initial
formulation, allow spatially and even temporally varying
coefficients but do not take into account the interannual snow
crystal temporal evolution for each grid cells as do the dynamic
and extended algorithms.
3.2. Dynamic algorithm

The dynamic algorithm (Josberger and Mognard, 2002;
Mognard and Josberger, 2002) used in this study takes into
account the internal snowpack properties, in particular the
snow grain size temporal and spatial variability. The Thermal
Gradient Index (TGI) represents the effect of the bulk tem-
perature gradient through the snowpack and is a proxy for snow
grain growth:

TGI ¼
Z

Tg � Ta
D tð Þ ð2Þ

where Tg is the ground temperature (K) at the interface between
the ground and the snow and Ta is the air temperature (K) as
defined in Section 2.3. Josberger and Mognard (2002) showed,
using numerous in situ snow depth measurements in the Northern
Great Plains of the USA, that a linear relationship exists between
the spectral gradient SG and TGI:

SG ¼ aTGIþ b: ð3Þ

Given the definition of TGI (Eq. (2)) and by differentiating
the above equation, snow depth can be calculated as follows:

SD ¼ a Tg � Ta
� �
dSG=dt

: ð4Þ

Grippa et al. (2004) used the snow depth USAF/ETACmulti-
year average (Foster and Davy, 1988) to determine the slope of
the linear relation between SG and TGI, α, which has been set to
a temporally and spatially constant value equal to 3.5. Yet,
ETAC climatology, which ends in the 1980s, captures a snow
cover regime quite different from the studied time period.
Therefore, the amplitude of the retrieved snow depth fields
might be biased compared to GSWP2. Subsequently, this issue
can be solved.

In Eq. (4), the snow depth can only be computed when the
spectral gradient dSG/dt is changing in time, i.e. when the snow
grain size and/or depth is evolving at an appreciable rate. This
happens early in winter season when a thin snowpack combined
with cold air temperatures generates rapid crystal growth.
Therefore snow depth is calculated using Eq. (4) at the be-
ginning of the snow season and when dSG/dt decreases below a
certain threshold (in this study 1 K/pentad, for more details see
Grippa et al., 2004), the static algorithm is used (after the
snowpack has been established), with the a coefficient (Eq. (1))
calculated to match the last snow depth estimate from the
dynamic algorithm for each pixel. A spatially varying co-
efficient is then determined for each pixel from the snow depth
value at the time of the transition between dynamic and static
algorithm (the transition is usually reached in February de-
pending on the location and the climatic conditions). Note that
this spatially dependent coefficient differs from one winter year
to the next. This combination of snow depths retrieved using
Eq. (4) and the static algorithm, Eq. (1), presented above will be
hereafter referred to as the dynamic algorithm.



2562 S. Biancamaria et al. / Remote Sensing of Environment 112 (2008) 2557–2568
3.3. Extended dynamic algorithm

Over some areas, snow depth cannot be computed because
the spectral gradient does not change much in time throughout
the entire snow season (dSG/dt is always below the threshold
of 1 K/pentad). For these locations the spatially varying
Chang algorithm is used with the a coefficient calculated as
follows:

a ¼ SDETAC Januaryð Þ
Tb19H � Tb37Hð Þ Januaryð Þ ð5Þ

where SDETAC(January) is the January snow depth from the
ETAC multi-year average and (Tb19H−Tb37H) (January) is the
average spectral gradient for January. This method allows the a
coefficient to vary in space but not in time.
Fig. 3. Snow depth (cm) multi-year average for January (1988/1995) from GSWP2 (a)
For the retrieval algorithms and the GSWP2 data, the
monthly snow depth multi-year average was constructed by
averaging the monthly fields from October 1987 to September
1995. To compare with the GSWP2 snow depth, the SSM/I-
based multi-year averages have been mapped to a 1°×1°
resolution grid using a polar cylindrical equidistant map pro-
jection. Finally, note that Greenland was not taken into account
in the results presented herein (as it poses specific problems
related to both the LSSs and the retrieval algorithms).

4. Results

4.1. Global validation

The GSWP2 January snow depth multi-year average is
shown Fig. 3a, and the corresponding SSM/I derived January
, static algorithm (b), dynamic algorithm (c) and extended dynamic algorithm (d).



Fig. 4. Scatter plots GSWP2 versus the static (first column) and the dynamic
algorithms (second column) with only the pixels over which the dynamic
algorithm is applied. For all the plots the y-axis corresponds to GSWP2 snow
depth (cm) and the x-axis corresponds to snow depth (cm) estimates using static
or dynamic algorithm. Each row corresponds to a month (from October to
March). The linear regression fits (solid lines, with its equation in the top left-
hand corner of each plot), the correlation coefficients and the line y=x (dashed
lines) are also shown. Greenland has been eliminated.
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snow depth multi-year averages from the three retrieval algo-
rithms are shown in Fig. 3b, c and d. The three algorithms tend
to underestimate snow depth compared to GSWP2 (colour
scales are not the same in Fig. 3a and Fig. 3b, c, d). Some of the
discrepancy between GWSP2 and the SSM/I estimates could be
removed by tuning the a coefficient for the static algorithm
(Eq. (1)) and the α coefficient for the dynamic algorithm
(Eq. (4)). However, this has not been done because the purpose
of this study is to derive an average snowpack thickness using
currently available algorithms.

In Eurasia, the static algorithm (Fig. 3b) accumulates snow
over eastern Siberia (between 100°N and 180°N), whereas for
GSWP2 and for the dynamic and extended algorithms (Fig. 3a,
c, d) snow maxima are localized in western and central Siberia
(west of the Ural Mountains and Yenisey river basin, in
agreement with the location of maximum winter precipitation
patterns). Over North America, the static algorithm accumulates
snow along an east–west band located approximately at 60°N.
The GSWP2 data also shows snow in this region, but the
maximum snow accumulation is over the Rocky Mountains and
the eastern part of Canada in agreement with the location of
maximum winter precipitation patterns. The characteristic fea-
tures of snow accumulation regions obtained with the dynamic
and with the extended dynamic algorithms agree globally with
GSWP2. Over Eurasia, the better performance of the dynamic
algorithms over the static algorithm is particularly striking.
Over North America, the results of the visual comparison are
not as straightforward, but still the dynamic algorithm features
are in better agreement with the GSWP2 field than the static
algorithm. The regions of deepest snow pack obtained with the
static algorithm correspond to the regions where the coldest
winter air temperatures are recorded (Fig. 2d). The correlation
coefficient between the January NCEP air temperature field
(Fig. 2d) and the January static snow depth estimated field
(Fig. 3b) is −0.77, a much larger value then for any of the
correlation coefficient obtained with the GSWP2 snow depth
fields.

The dynamic algorithm (Fig. 3c) shows large regions where
snow depth cannot be computed. Some of these regions corre-
spond to mixed pixels along the coast line, to recurrent
occurrence of water in the snow pixel (succession of melt events
during winter season, especially west of the Ural Mountains), to
topography effects (for the Rocky Mountains and the Urals),
etc. For the period 1987/1995 snow depth cannot be computed
using only the dynamic algorithm for almost 34% of the study
domain, this issue is still under investigation. The extended
algorithm (Fig. 3d), that includes a priori information from the
ETAC snow multi-year average, shows accumulation in the
Rocky Mountains, the Ural Mountains and in the eastern part of
Alaska in agreement with GSWP2.

Monthly scatterplots, shown in Fig. 4, for the winter season
from October to March, compare the GSWP2 snow depth
estimates to the snow depths from both the static (first col-
umn) and the dynamic (second column) algorithms, only for
the pixels over which the dynamic algorithm is applied. In
this figure, each row corresponds to a winter month (from
October 1987/1994 to March 1988/1995). For each scatterplot,
the y-axis corresponds to snow depth from GSWP2 and the x-
axis corresponds to a retrieval algorithm. The coefficients of
correlation for the dynamic algorithm are of the same order of
magnitude, and for November to February are better, than the
correlation coefficient between the USAF/ETAC climatology



Fig. 5. Scatter plots GSWP2 snow depth (cm) versus the static (first column) and
the extended dynamic algorithms (second column) snow depth (cm) for the
whole high latitude regions (except Greenland). Each row corresponds to a
month (from October to March). The linear regression fits (solid lines, with its
equation in the top left-hand corner of each plot), the correlation coefficients and
the line y=x (dashed lines) are also shown.
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and GSWP2. After January, the correlation between dynamic
algorithm and GSWP2 decreases slightly. Boone et al. (2006),
link this decrease with two factors. First, ice layer formation,
beginning of snow melt and reduction in snow grain size
(arising from thermal gradients) impact the retrieval algorithms.
Second, there is an increasing inter-model spread in time for
GSWP2 snow depth multi-year average, because of increasing
LSS differences during snow melt periods. Fig. 5 presents
similar scatterplots, which correspond to GSWP2 snow depth
(cm) versus the static (first column) and the extended dynamic
(second column) algorithms for the whole high latitude regions
(except Greenland). Apart from October, the dynamic and
extended dynamic algorithms always have a better correlation
coefficient with GSWP2 than the static algorithm, in agreement
with the observations on the 2D plots (Fig. 3) in the preceding
paragraph. There is no correlation between static algorithm and
GSWP2 from December to March (correlation coefficient
between 0.10 and −0.04). The poor performance of the dynamic
algorithm in October can be explained by the high variability of
the spectral gradient in the very beginning of the snow season,
while the snowpack is not well established.

Fig. 5 shows that the plots GSWP2 versus extended algo-
rithm have a larger amount of scattered points than the plots
GSWP2 versus the dynamic algorithm. This could be explained
by the fit of the spatially variable a coefficient in regions where
the spectral gradient does not vary much in time.

Table 1 presents the correlation coefficients between GSWP2
and the three algorithms from October to March for the entire
domain (latitudeN50°N), for Eurasia (latitudeN50°N and 0°-
Eb longitudeb191°E) and for North America (latitudeN50°N
and 191°Eb longitudeb360°E). For each correlation coeffi-
cient, a p-value has been calculated to estimate the statistical
significance of the correlation. For the dynamic and the ex-
tended dynamic algorithm all the correlation coefficients are
highly significant (all the p-values are under 0.001, except for
the dynamic algorithm in October over North America, where
the p-value is 0.05, which is a low value still significant). High
p-values are obtained for the static algorithm after December,
these values correspond to correlation coefficients close to zero.
The comparison between Eurasia and North America reveals
that the dynamic retrieval methods perform better over Eurasia
than over North America. For example the correlation coeffi-
cient between GSWP2 and the dynamic algorithm in January
over Eurasia is 0.65, whereas it decreases to 0.29 over North
America. In Canada, many investigators have evaluated the
accuracy of SSMI snow depth derived from an adjusted static
algorithm tuned to the different land cover and obtained a good
performance in the prairie and high latitude forest regions, but a
poor performance in the high latitude tundra region (Derksen
et al., 2003, 2004, 2005; De Seve et al., 1997).

4.2. Snow depth estimates over vegetation and lakes

To investigate the different behaviour of the SSMI derived
monthly snow depth over Eurasia and North America, the
vegetation and lake classifications described in Section 2.4.2
have been used. Tundra and taiga, the two predominant vege-
tation types in the high latitude regions, as well as lake density
modify brightness temperatures and therefore snow depth esti-
mates (Duguay et al., 2005). Beside, GSWP2 models do not
include lakes (only the land surface). So, in regions with high
percentage of lakes, the differences between GSWP2 and SSM/I
based algorithms data are expected to be quite significant. For
the following analysis, only the snow estimates from the



Table 1
Correlation coefficients from October to March between the three algorithms and GSWP2, for three regions: the entire domain (latitudeN50°N), Eurasia
(latitudeN50°N and 0°Eb longitudeb191°E) and North America (latitudeN50°N and 191°Eb longitudeb360°E)

Oct Nov Dec Jan Feb Mar

Entire domain Static 0.45 0.38 0.10 −0.03 (p=0.07) −0.04 (p=0.01) 0.02 (p=0.26)
Dynamic 0.33 0.60 0.54 0.55 0.47 0.47
Extended 0.23 0.48 0.49 0.52 0.49 0.47

Eurasia Static 0.62 0.50 0.18 0.01 (p=0.42) −0.04 (p=0.01) −0.03 (p=0.15)
Dynamic 0.40 0.68 0.63 0.65 0.56 0.50
Extended 0.29 0.53 0.57 0.61 0.59 0.52

North America Static 0.27 0.27 0.01 (p=0.95) −0.11 −0.02 (p=0.45) 0.16
Dynamic 0.13 (p=0.05) 0.42 0.33 0.29 0.33 0.39
Extended 0.20 0.46 0.35 0.33 0.33 0.36

For each correlation coefficient, p-value has been calculated to estimate the statistical significance of the correlation. On this table, only the p-values above 0.001 are
shown in brackets below the correlation coefficient (correlation coefficients with p-values under 0.001 are highly significant).
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dynamic algorithm have been used (not to be biased by the a
priori information included into the extended algorithm).

Microwave radiation at 37 GHz is absorbed by vegetation
(Chang et al., 1996). Yet, Hallikainen et al. (1988) found that
emissivities for forests in Finland at 37 and 18 GHz are very
similar with values of 0.9 to 0.92. Thus, the difference between
brightness temperature at 37 and 18 GHz might not be very
sensitive to the boreal forest. The impact of vegetation on the
brightness temperature could influence the snow depth retrieval
Fig. 6. Plots of correlation coefficients between GSWP2 and dynamic algorithm (y-
Eurasia (b) and North America (c). For each plot, correlations over the whole area (bl
are shown. Classification between tundra and taiga comes from Liston and Sturm (1
algorithm, but this impact is very difficult to predict (compared
to the static algorithm).

Fig. 6 shows the correlation coefficients between GSWP2
and the dynamic algorithm versus time (October to March) for
the entire domain, for Eurasia and for North America as a
function of snow classification type. For the entire domain
(Fig. 6a), the correlation is globally better over taiga, whereas
over tundra it is very close (and a bit lower) to the correlation
over the global area. For Eurasia (Fig. 6b), the correlation over
axis) for each month from October to March (x-axis) for the entire domain (a),
ack solid line), over tundra (black dotted line) and over taiga (black dashed line)
998) (Fig. 1b).



Table 2
Mean percentage of lakes for tundra, taiga and global area for the entire study domain, for Eurasia and for North America

Entire domain Eurasia North America

Global Tundra Taiga Global Tundra Taiga Global Tundra Taiga

Mean % of lakes 6.8% 8.5% 4.4% 5.6% 7% 3.2% 9.1% 11% 7%
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tundra and taiga is very similar. Thus, emissivity over Eurasia
does not seem to be very sensitive to the distinction between
tundra/taiga. For North America (Fig. 6c), the correlation is
continuously higher over taiga than over tundra. This difference
could be attributed to the relatively consistent distribution of
snow properties in boreal forest, whereas, in the open tundra,
snow depth could be highly variable and therefore very difficult
to estimate because of wind redistribution (Derksen et al.,
2005). So, we do observe a difference in the behaviour over
tundra and taiga between the two continents: contrarily to
Eurasia, North America seems to be significantly sensitive to
vegetation type.

Emissivity from snow-covered lakes is different from
terrestrial emissivity, yet the retrieval algorithms have been
designed to work on land surfaces and do not take into account
those differences. Indeed, contrarily to other land surfaces,
Fig. 7. Plots of correlation coefficients between GSWP2 and dynamic algorithm ov
dotted line with square markers), 10% (black dotted line with down triangle markers)
dashed line with diamond markers) and 0% (black dashed line with + markers) of lak
North America (c). The lake classification comes from IGBP (Fig. 1c).
brightness temperature over lakes is higher at 37 than 19 GHz
during both the ice-free and ice-covered periods (Duguay et al.,
2005; Hall et al., 1981; Soko et al., 2003). The spectral gradient
(difference between 19 and 37 GHz brightness temperature) will
be smaller if there are lakes in the SSM/I pixel and can even be
negative if the percentage of lakes is high enough. So both the
static, dynamic and extended dynamic algorithms will be af-
fected. Table 2 presents the mean percentage of lakes over the
entire high latitude regions, over Eurasia, and over North
America depending on the vegetation cover (tundra, taiga and
the region as a whole). North America has almost twice as many
lakes as Eurasia (mean percentage of lakes over North America
is 9.1%, whereas it decreases to 5.6% over Eurasia) and for both
continents the lake density is almost twice as dense in the tundra
than in the taiga regions. The increased lake density could be
responsible for the low correlation coefficients over North
er regions with more than 30% (black dotted line with x markers), 20% (black
of lakes and less than 10% (black dashed line with triangle markers), 5% (black
es and the whole area (black solid line) for the entire domain (a), Eurasia (b) and
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America and may also explain the different behaviour over
tundra and taiga between the two continents. Over North
America the higher lake density may affect the microwave
signal providing a significantly better snow depth retrieval in
relatively lower lake density regions, the taiga region (mean
lake density of 7%), than in the tundra (mean lake density of
11%), while over Eurasia the difference in lake density between
tundra and taiga may be less relevant since it is in both cases
lower than 7%. To better characterize the influence of lakes on
the correlation between GSWP2 and the dynamic algorithm, the
correlation coefficients have been plotted (Fig. 7) for different
percentage of lakes (above 10%, 20%, 30% and below 10%, 5%
and 0%) for the entire study domain (Fig. 7a), for Eurasia
(Fig. 7b) and for North America (Fig. 7c). On this figure it
appears clearly that correlation is better for lake sparse (less than
10%) than for lake rich (more than 30%) grid cells, except for
November and December in North America.

5. Conclusion and perspectives

Global snow depth estimates over the Northern Hemisphere
(above 50°N) have been derived from SSM/I data, using a static
algorithm and a dynamic algorithm that takes into account the
temporal and spatial variations of the snow grains size. The
static algorithm, which is widely used, does not take into ac-
count the spatio-temporal variations of the snow pack and
assumes a constant snow grain size. The snow depth fields
estimated from the static algorithm do not correctly locates the
regions of greater snow accumulation and do not significantly
correlate to the GSWP2 snow depth fields (correlation co-
efficient −0.03 for January), but show a high degree of
correlation with the NCEP air temperature fields (correlation
coefficient −0.77 for January). The deepest satellite derived
snow pack being located in regions with the lowest air tempera-
tures. This justifies our hypothesis that one of the main driving
factors for the microwave emissivity of the snow pack is the
snow grain size determined by the thermal gradient in the snow
pack. The dynamic algorithm correctly locates the regions of
greater snow accumulation when compared to the GSWP2
output (correlation coefficient 0.55 for January, which can be
considered good since there is much snow depth variability in a
25 by 25 km pixel due to wind effects, microscale topography,).

Since the dynamic algorithm is restricted to regions where
the spectral gradient varies with time, an extended dynamic
algorithm has been derived that allows to compute a global
2D satellite snow depth field and fills in the gaps where the
dynamic algorithm cannot be applied. This extended dynamic
algorithm also correlates well with the GSWP2 snow depth over
the whole high latitude regions (with a correlation coefficient of
0.52 in January).

A comparison of the monthly satellite-derived snow depth
multi-year averages over Eurasia and North America yields
different behaviors. Over Eurasia the correlation with the mod-
els is better than over North America. The differences between
Eurasia and North America could be explained by the dif-
ferences in lake density, which is in North America almost twice
as high as in Eurasia.
If the characteristic features of the GSWP2 snow depth fields
have been correctly reproduced with the satellite derived fields,
the amplitude of the signal has to be fine-tuned. There is a
constant underestimation of the amplitude of the satellite fields
compared to the GSWP2 fields (Figs. 4 and 5), which could be
overcome by calibrating the α coefficient (Eq. (4)). We did not
re-calibrate any of the models because the goal of this study was
to determine if characteristic features of the multi-year averaged
global snow depth in the high latitude regions can be derived
from passive microwave satellite measurements, if the spatio-
temporal evolution of the snowpack is correctly taken into
account.

In the future, the new satellite derived snow depth fields can be
used to study the interannual snowpack variability and better
understand the hydrological cycle in the high latitude regions. A
study over a test region, the Ob river basin in Siberia, showed that
the interannual snowpack variability over the entire basin was
correlated to the Ob in situ discharge measurements at the Ob
estuary (Grippa et al., 2005a). A correlation between the snow-
pack variability and the summer vegetation activity in Siberia has
been found, that could be explained by the protection provided by
the snowpack from the cold Siberian temperatures (Grippa et al.,
2005b). We plan to extend these regional analyses to the whole
high latitude regions. Moreover, climate studies of the snow pack
in the high latitude regions can also be performed, since the
satellite passive microwave data set is continuous since 1979.
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